88 research outputs found

    Chemical ageing and transformation of diffusivity in semi-solid multi-component organic aerosol particles

    Get PDF
    Recent experimental evidence underlines the importance of reduced diffusivity in amorphous semi-solid or glassy atmospheric aerosols. This paper investigates the impact of diffusivity on the ageing of multi-component reactive organic particles representative of atmospheric cooking aerosols. We apply and extend the recently developed KM-SUB model in a study of a 12-component mixture containing oleic and palmitoleic acids. We demonstrate that changes in the diffusivity may explain the evolution of chemical loss rates in ageing semi-solid particles, and we resolve surface and bulk processes under transient reaction conditions considering diffusivities altered by oligomerisation. This new model treatment allows prediction of the ageing of mixed organic multi-component aerosols over atmospherically relevant time scales and conditions. We illustrate the impact of changing diffusivity on the chemical half-life of reactive components in semisolid particles, and we demonstrate how solidification and crust formation at the particle surface can affect the chemical transformation of organic aerosols

    Exploring NOy chemistry in levitated aqueous aerosol droplets

    Get PDF
    Chemistry of reactive nitrogen oxides, NOy, is crucial for our understanding of composition and properties of the Earth’s atmosphere. The proof-of-principle experiments demonstrated that we are able to study the atmospheric fate of nitrogen oxides that has significant impact on global climate and hydrological cycle, thus affecting the likelihood of local floods and acid rain

    How long does it take to compute the eigenvalues of a random symmetric matrix?

    Get PDF
    We present the results of an empirical study of the performance of the QR algorithm (with and without shifts) and the Toda algorithm on random symmetric matrices. The random matrices are chosen from six ensembles, four of which lie in the Wigner class. For all three algorithms, we observe a form of universality for the deflation time statistics for random matrices within the Wigner class. For these ensembles, the empirical distribution of a normalized deflation time is found to collapse onto a curve that depends only on the algorithm, but not on the matrix size or deflation tolerance provided the matrix size is large enough (see Figure 4, Figure 7 and Figure 10). For the QR algorithm with the Wilkinson shift, the observed universality is even stronger and includes certain non-Wigner ensembles. Our experiments also provide a quantitative statistical picture of the accelerated convergence with shifts.Comment: 20 Figures; Revision includes a treatment of the QR algorithm with shift

    Kinetic multi-layer model of gas-particle interactions in aerosols and clouds (KM-GAP): linking condensation, evaporation and chemical reactions of organics, oxidants and water

    Get PDF
    We present a novel kinetic multi-layer model for gas-particle interactions in aerosols and clouds (KM-GAP) that treats explicitly all steps of mass transport and chemical reaction of semi-volatile species partitioning between gas phase, particle surface and particle bulk. KM-GAP is based on the PRA model framework (Pöschl-Rudich-Ammann, 2007), and it includes gas phase diffusion, reversible adsorption, surface reactions, bulk diffusion and reaction, as well as condensation, evaporation and heat transfer. The size change of atmospheric particles and the temporal evolution and spatial profile of the concentration of individual chemical species can be modelled along with gas uptake and accommodation coefficients. Depending on the complexity of the investigated system, unlimited numbers of semi-volatile species, chemical reactions, and physical processes can be treated, and the model shall help to bridge gaps in the understanding and quantification of multiphase chemistry and microphysics in atmo- spheric aerosols and clouds. In this study we demonstrate how KM-GAP can be used to analyze, interpret and design experimental investigations of changes in particle size and chemical composition in response to condensation, evaporation, and chemical reaction. For the condensational growth of water droplets, our kinetic model results provide a direct link between laboratory observations and molecular dynamic simulations, confirming that the accommodation coefficient of water at 270 K is close to unity. Literature data on the evaporation of dioctyl phthalate as a function of particle size and time can be reproduced, and the model results suggest that changes in the experimental conditions like aerosol particle concentration and chamber geometry may influence the evaporation kinetics and can be optimized for eðcient probing of specific physical effects and parameters. With regard to oxidative aging of organic aerosol particles, we illustrate how the formation and evaporation of volatile reaction products like nonanal can cause a decrease in the size of oleic acid particles exposed to ozone

    Indoor Air Quality Emissions & Modelling System (IAQ-EMS) - Indoor Air pollutants database

    Get PDF
    The datasets included are the literary review made on all the available research relative to indoor air pollution in the UK, methodologies of conversion of sampled concentrations in emission rates and calculated emission rates from different indoor activities. The dataset has been developed by the University of Birmingham as part of the Clean Air programme "Indoor Air Quality Emissions & Modelling System" (https://www.ukcleanair.org/)

    Complementarity of neutron reflectometry and ellipsometry for the study of atmospheric reactions at the air–water interface

    Get PDF
    The combined application of neutron reflectometry (NR) and ellipsometry to determine the oxidation kinetics of organic monolayers at the air–water interface is described for the first time. This advance was possible thanks to a new miniaturised reaction chamber that is compatible with the two techniques and has controlled gas delivery. The rate coefficient for the oxidation of methyl oleate monolayers by gas-phase O3 determined using NR is (5.4 ± 0.6) × 10−10 cm2 per molecule per s, which is consistent with the value reported in the literature but is now better constrained. This highlights the potential for the investigation of faster atmospheric reactions in future studies. The rate coefficient determined using ellipsometry is (5.0 ± 0.9) × 10−10 cm2 per molecule per s, which indicates the potential of this more economical, laboratory-based technique to be employed in parallel with NR. In this case, temporal fluctuations in the optical signal are attributed to the mobility of islands of reaction products. We outline how such information may provide critical missing information in the identification of transient reaction products in a range of atmospheric surface reactions in the future

    Night-time oxidation of a monolayer model for the air–water interface of marine aerosol - a study by simultaneous neutron reflectometry and in situ infra-red reflection absorption spectroscopy (IRRAS)

    Get PDF
    This paper describes experiments on the ageing of a monolayer model for the air–water interface of marine aerosols composed of a typical glycolipid, galactocerebroside (GCB). Lipopolysaccharides have been observed in marine aerosols, and GCB is used as a proxy for these more complex lipopolysaccharides. GCB monolayers are investigated as pure films, as mixed films with palmitic acid, which is abundant in marine aerosols and forms a stable attractively mixed film with GCB, particularly with divalent salts present in the subphase, and as mixed films with palmitoleic acid, an unsaturated analogue of palmitic acid. Such mixed films are more realistic models of atmospheric aerosols than simpler single-component systems. Neutron reflectometry (NR) has been combined in situ with Fourier transform infra-red reflection absorption spectroscopy (IRRAS) in a pioneering analysis and reaction setup designed by us specifically to study mixed organic monolayers at the air–water interface. The two techniques in combination allow for more sophisticated observation of multi-component monolayers than has previously been possible. The structure at the air–water interface was also investigated by complementary Brewster angle microscopy (BAM). This study looks specifically at the oxidation of the organic films by nitrate radicals (NO3•), the key atmospheric oxidant present at night. We conclude that NO3• oxidation cannot fully remove a cerebroside monolayer from the surface on atmospherically relevant timescales, leaving its saturated tail at the interface. This is true for pure and salt water subphases, as well as for single- and two-component films. The behaviour of the unsaturated tail section of the molecule is more variable and is affected by interactions with co-deposited species. Most surprisingly, we found that the presence of CaCl2 in the subphase extends the lifetime of the unsaturated tail substantially—a new explanation for longer residence times of materials in the atmosphere compared to lifetimes based on laboratory studies of simplified model systems. It is thus likely that aerosols produced from the sea-surface microlayer at night will remain covered in surfactant molecules on atmospherically relevant timescales with impact on the droplet’s surface tension and on the transport of chemical species across the air–water interface

    Time-resolved gas-phase kinetic, quantum chemical and RRKM studies of the reaction of silylene with 2,5-dihydrofuran

    Get PDF
    Time-resolved kinetic studies of silylene, SiH2, generated by laser flash photolysis of phenylsilane, have been carried out to obtain rate coefficients for its bimolecular reaction with 2,5-dihydrofuran (2,5-DHF). The reaction was studied in the gas phase over the pressure range 1-100 Torr in SF6 bath gas, at five temperatures in the range 296-598 K. The reaction showed pressure dependences characteristic of a third body assisted association. The second order rate coefficients obtained by RRKM-assisted extrapolation to the high pressure limits at each temperature, fitted the following Arrhenius equation where the error limits are single standard deviations: log(k/cm3 molecule-1 s-1) = (-9.96 ± 0.08) + (3.38 ± 0.62 kJ mol-1)/ RT ln10 End product analysis revealed no GC-identifiable product. Quantum chemical (ab initio) calculations indicate that reaction of SiH2 with 2,5-DHF can occur at both the double bond (to form a silirane) and the O-atom (to form a donor acceptor, zwitterionic complex) via barrierless processes. Further possible reaction steps have been explored, of which the only viable one appears to be decomposition of the O-complex to give 1,3-butadiene + silanone, although isomerisation of the silirane cannot be completely ruled out. The potential energy surface for SiH2 + 2,5-DHF is consistent with that of SiH2 with Me2O, and with that of SiH2 with cis-but-2-ene, the simplest reference reactions. RRKM calculations incorporating reaction at both π- and O-atom sites, can be made to fit the experimental rate coefficient pressure dependence curves at 296-476 K, giving values for k∞(π) and k∞(O) which indicate the latter is larger in magnitude at all temperatures, in contrast to values from individual model reactions. This unexpected result suggests that, in 2,5-DHF with its two different reaction sites, the O-atom exerts the more pronounced electrophilic attraction on the approaching silylene. Arrhenius parameters for the individual pathways have been obtained. The lack of a fit at 598K is consistent with decomposition of the O-complex to give 1,3-butadiene + silanone
    • …
    corecore